Fundamentals of G I S A N S and Selected Examples

Johannes Schlipf,

Peter Müller-Buschbaum

Technische Universität München Lehrstuhl für Funktionelle Materialien Physik-Department James-Franck-Str. 1 85748 Garching b. München Germany

SwedNess Annual Meeting & Swedish Neutron Week – Gothenburg, April 24, 2018

Outline

- Fundamental Aspects of GISANS
- Selected Examples
- Monitoring the Ingression of Moisture into Hybrid Perovskite Thin Films
 with In-Situ GISANS
 + ACS LiveSlides

German Black Forest Cherry Cake looking for a more non-destructive way ...

Statistical analysis of AFM data

isotropic structure \rightarrow circular ring \rightarrow well described by one in-plane length

AFM data accessible with scan ranges up to \approx 100 μm

- \rightarrow determination of most prominent in-plane length Λ_{PSD}
- \rightarrow only sample surface probed !

P. Müller-Buschbaum et al., J. Macromol. Sci., 1999, B38, 577

GISAS (grazing incidence small angle scattering)

- fixed incidence angle $\alpha_i <<1^\circ$
- two high quality entrance cross-slits
- mostly evacuated pathway
- two dimensional detector array
- controlling sample position and orientation with respect to the beam

sample-detector distance determines resolution \rightarrow sub-nm up to several µm

GISAXS: first experiment: J. R. Levine et al., *J. Appl. Cryst.* **1989**, *22*, 528

GISANS:

P. Müller-Buschbaum et al., Colloid. Polym. Sci. 1999, 277, 1193

Reviews: P. Müller-Buschbaum, Polymer Journal 2013, 45, 34

P. Müller-Buschbaum, European Polymer Journal 2016, 81, 470

ТUП

T. Salditt et al., Phys. Rev. B 1995, 51, 5617

Modelling of GISANS data several software packages

IsGISAXS

Contract Contract Contract Contract	alte	El = C (Q, space	+	00		4 4	0	*		b
		IsGISAXS								
Version 2.6	a program for analyzing Grazing Incidence Small Angle X-Ray Scattering from nanostructures									
Introduction Distory GISAXS principle		by								
Electrometer Electrometer Electrometer Version Engenerymouth Corporable	<u>Rémi Lazzari</u>									
· Downland	6	Institut des NanoSciences de	Paris,							
	Universit 🗢 s Pierre et Marie Curie et Denis Diderot									
		CNRS UMR 7588 Paris, FRANCE								
	TH NE	New release : IsGBAXS 2.6 !								

R. Lazzari, J. Appl. Cryst. 2002, 35, 406

HipGISAXS

Partsan: A Manuary P. x - MISAR	223 * + +									
• Contransportement/hippen	8	0 (9, He68405	+	\$ B	۵	4.1	4	٥.	۰,	-
	HipGISAXS		1							
	A massively-parallel high-performance x-ray s	attering data analysis code								
	Latest News									
	Watch out for version 1.0 of HipGiSAXS to be released :	Inoc								
	Supported Platforms									
	Clusters and supercomputers, or single processor syste been optimized for high-efficiency with the following p	n (Including your laptop), HipGiSA rocessor architectures;	5 has							
	Initel multi-core processors AND multi-core processors Write during on Quadratic Write GHu (Feld an Quadrat) Initel Xeon Phi coprocessors (MC), (NOTE: This support	as been temporarily removed.]								
	Dependencies									
	UNIT-Use based system ONE OCC 4.7 or above, or Intel C++ Complians 13 or ab Soons 2.0 or above Operation 1.4.4 or above Exect 1.49.4 or above Exect 1.49.4 or above	·** b								
	THE Lansay (section) [Optional] (For GPU version only) (HVdis CUDA 50K vers [Optional] Parallak HDF5 Liberry [Optional] (HDF5 dependency) Title [Optional] (HDF5 dependency) Title	on 5.5 or above								

S. Chourou et al., J. Appl. Cryst. 2013, 46, 1781

FitGISAXS

D. Babonneau, J. Appl. Cryst. 2010, 43, 929

BornAgain

 \rightarrow bornagainproject.org

ТUП

Modelling of complex samples both for x-rays and neutrons

HipGISAXS from ALS S. Chourou et al., *J. Appl. Cryst.* (*) **2013**, *4*6, 1781

(a)

q_{xy} (nm⁻¹)

q_{xy} (nm⁻¹)

A. Hexemer, P. Müller-Buschbaum, IUCrJ 2015, 2, 106-125

Comparison SANS versus GISANS

thick tri-block copolymer film

SANS and GISANS yield lamellar spacing $L_0 = \Lambda_A = 47 \text{ nm}$

GISANS has higher resolution \rightarrow second length $\Lambda_{\rm B}$ = 300 nm

P. Müller-Buschbaum et al., Langmuir 2006, 22, 9295

ТШП

Surface sensitivity scattering depth of neutrons

H. Dosch et al., Phys. Rev. Lett. 1986, 56, 1144

Lehrstuhl für Funktionelle Materialien Fakultät für Physik Technische Universität München

GISANS at D22

P. Müller-Buschbaum et al., Physica B 2000, 283, 53

ТШ

Polymer nano-droplets

small droplets: prominent in-plane length scale of $\Lambda_t = 522\pm5$ nm \rightarrow well pronounced peak in GISAXS and GISANS or in **AFM** data

P. Müller-Buschbaum et al., Phys. Chem. Chem. Phys. 1999, 1, 3857

P. Müller-Buschbaum et al., Langmuir 2001, 17, 5567

TOF-GISANS at REFSANS

48 h counting time, using 5 beams

sample-detector distance 10.7 m

wavelength range 0.25 - 1.49 nm

- select region of interest from 2D intensity
- TOF superposition of many wavelengths
- definition of individual time channels

P. Müller-Buschbaum et al., Eur. Phys. J. E ST. 2009, 167, 107

P. Müller-Buschbaum et al., Eur. Phys. J. E ST., 2009, 167, 107

Porosity determination

TOF-GISANS: vertical cuts \rightarrow extract Yoneda peak positions

G. Kaune, P. Müller-Buschbaum et al., J. Poly. Sci. Part B. 2010, 48, 1628

Polarized GISANS

Co nanoparticles on Si/SiO_x at fields of 110 mT

D22, data taken with spin flipper in front of sample

Debye-Scherrer rings with strong magnetic contrast

 \rightarrow short range lateral

order of 13 nm nano-

particles with Λ = 17 nm

K. Theis-Bröhl, et al., *J. Appl. Phys.* **2011**, *110*, 102207

Summary

GISANS opens new possibilities of advanced sample characterization

GISAS : reciprocal space analysis technique

- non-destructive structural probe
- sensitive to structures between 1 nm to 5 (or 21) μm
- does not require a special sample preparation
- yields excellent sampling statistics

(averages over macroscopic regions to provide information on nanometer scale)

- buried structures: object geometry, size distributions and spatial correlations

Monitoring the Ingression of Moisture ^M into Hybrid Perovskite Thin Films with In-Situ GISANS

Johannes Schlipf¹,

- L. Bießmann¹, L. Oesinghaus²,
- E. Berger³, E. Metwalli¹, J. A. Lercher³,
- L. Porcar⁴, P. Müller-Buschbaum¹

Technische Universität München, Lehrstuhl für Funktionelle Materialien, Physik-Department, Garching (D)
 Technische Universität München, Physics of Synthetic Biological Systems, Physics-Dept., Garching (D)
 Technische Universität München, Department of Chemistry and Catalysis Research Center, Garching (D)
 Institut Laue-Langevin (ILL), Beamline D22, Grenoble (F)

J. Schlipf et al., J. Phys. Chem. Lett. 2018, 9, 2015

Properties of hybrid perovskites

- exceptional optoelectronic properties
- ✓ photovoltaic efficiency > 20 %
- highly tunable by composition
- earth-abundant precursor materials
- ✓ solution processing
 - → low production costs
- ✓ large-scale applicability
- ✓ device lifetimes
 - \geq 1 year feasible^[2]
- degradation with moisture

Best research cell power conversion efficiencies

Preparation of planar solar cells

P. Docampo et al., Adv. Energy Mater. 2014, 14, 1400355

Planar perovskite solar cells

- method for highly efficient planar perovskite solar cells with PCE ~15 %
- dense, compact and homogeneous films
- Cl additive influences film growth and PCE
- nowadays basis for many 2-step synthesis methods = model system
 - P. Docampo et al., Adv. Energy Mater. 2014, 14, 1400355

Degradation with moisture

- high ambient humidity detrimental for photovoltaic performance
- degradation to PbI_2 in self-sustaining reaction
- formation of metastable hydrate phases
- recovery of perovskite possible for certain conditions

[2]

[1] J. M. Frost et al., Nano Lett. 2014, 14, 2584; [2] A. M. A. Leguy et al., Chem. Mater. 2015, 27, 3397 24

Degradation with moisture

high ambient humidity detrimental for photovoltaic performance

perovskite

- degradation to Pbl₂ in self-sustaining reaction
- formation of metastable hydrate phases
- recovery of perovskite possible for certain conditions

[2]

[1] J. M. Frost et al., Nano Lett. 2014, 14, 2584; [2] A. M. A. Leguy et al., Chem. Mater. 2015, 27, 3397 25

www.ill.eu

In-situ GISANS in humid atmosphere

- ✓ non-destructive
- ✓ probing large sample volume
 - ➔ high statistics
- ✓ high flux → 10 min/frame
- ✓ inner film morphology
- ✓ also non-crystalline material
- ✓ high contrast with D₂O

NEUTRONS FOR SCIENCE®

[1] P. Müller-Buschbaum, Eur. Polym. J. 2016, 81, 470

[1]

In-situ GISANS – experiment design

- inject D₂O or salt solutions into chamber
- control temperature, monitor humidity

J. Schlipf et al., J. Phys. Chem. Lett. 2018, 9, 2015

In-situ GISANS – data acquisition and treatment

In-situ GISANS – high vs. low humidity conditions

J. Schlipf et al., J. Phys. Chem. Lett. 2018, 9, 2015

Snapshots from the highest humidity levels

in-plane cuts

- strong shift of Yoneda peak for hydrated films
- higher roughness in dehydrated films than in

dry ones

- Pbl₂ formed for 93 %RH
- MAPI recovered for 73 %RH

➔ permanent morphological changes for high humidity levels

J. Schlipf et al., J. Phys. Chem. Lett. 2018, 9, 2015

Following water uptake in situ

Following water uptake in situ

Morphological changes due to hydration

J. Schlipf et al., J. Phys. Chem. Lett. 2018, 9, 2015

Crystal inflation reveals composition

- Kratky representation reveals slight crystal inflation for first 1.5 h
- mostly monohydrate = MAPI volume + 7 % vs. dihydrate = MAPI × 250 %
- no apparent changes for humidity \leq 58 %RH \rightarrow no monohydrate
- → water for low humidity not incorporated into crystals
 - J. Schlipf et al., J. Phys. Chem. Lett. 2018, 9, 2015

In-situ XRD during dehydration

Conclusions

- in-situ GISANS with high time resolution
- ingression of moisture at low %RH
 - → level of monohydrate
 - ➔ no hydrates formed
 - ➔ most water adsorbed
- sponge-like behavior at high %RH
 - → strong morphological changes of crystal domains for \ge 73 %RH
 - → formation of hydrates
 J. Schlipf et al., J. Phys. Chem. Lett. 2018, 9, 2015

Acknowledgments

